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ABSTRACT
Examining the characteristics of software vulnerabilities and the
code that contains them can lead to the development of more secure
software. We present a dataset (∼1.4 GB) containing vulnerable
source code files together with the corresponding, patched versions.
Contrary to other existing vulnerability datasets, ours includes
vulnerable files written in more than 40 programming languages.
Each file is associated to (1) a Common Vulnerability Exposures
identifier (CVE ID) and (2) the repository it came from. Further,
our dataset can be the basis for machine learning applications that
identify defects, as we show in specific examples. We also present a
supporting dataset that contains commit messages derived from Git
commits that serve as security patches. This dataset can be used to
train ML models that in turn, can be used to detect security patch
commits as we highlight in a specific use case.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories; Software post-development issues.
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1 INTRODUCTION
At the constantly evolving forefront of security, vulnerability iden-
tification remains a critical and challenging topic. Vulnerability-
exploitation can lead to unauthorized breaches and cause substan-
tial financial or social loss. There are numerous approaches to
detect vulnerabilities spanning from static analysis [12, 13] and
dynamic analysis [8] to recent advances in Machine Learning (ML)
approaches [7, 9].
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At the same time, ML applications are data-hungry and the col-
lection of high-quality vulnerable training samples of source code
remains a challenge. On this data curation topic, many attempts
have employed synthetic source code data in order to train models,
ensuring the quantity of training samples but losing in quality, as
artificial code examples lack the naturalness and complexity of
real-world scenarios. Other attempts leverage data derived from
open-source repositories by labeling vulnerable source code using
program analysis tools. These approaches may produce datasets
with several false positives.

Motivated by the latest developments, we have curated a dataset
of vulnerable source code files and their secure counterparts. To do
so, we have examined 5877 GitHub commits referenced by NVD
(National Vulnerability Database) [3] and CVE (Common Vulner-
ability and Exposures) [1] entries. Each of these entries contains
information about a certain security vulnerability or exposure. Fur-
ther, it includes data about the issue such as a text description, the
vulnerability type as defined by the Common Weakness Enumera-
tion identifier (CWE ID) [1], the severity of the issue by means of
CVSS (Common Vulnerability Scoring System) [2] Score, and other
data such as references.

For each commit we locate (1) the files that are related to the secu-
rity patch and (2) the vulnerable ones, and label them accordingly.
The information that we store for each file includes its original
repository, commit identifier, filename, its associated vulnerability
type and CVE identifier and finally its associated commit message.
Commit messages are kept in a separate, supporting dataset that
can be used to train Natural Language Processing text classification
models to detect commits that contain security patches.

Unlike existing work, our dataset spans across multiple pro-
gramming languages, with files coming from a large collection of
repositories. Vulnerable and non-vulnerable code is paired in code
changes and is accompanied by the respective commit message,
making it useful for ML applications.

The contributions of our work include: a) the construction pro-
cess of a labeled dataset that contains 27476 files (1.4 GB in total),
b) the dataset, and c) how it can be used to produce research results.
Our dataset1 and source code2 are available on Zenodo. A demon-
stration of CrossVul and how to use it can be found on YouTube.3

2 DATASET CONSTRUCTION PROCESS
Figure 1, illustrates the steps of the dataset construction process.
First, we collected all NVD entries that provided references to cor-
responding GitHub projects. We kept the references to GitHub

1https://doi.org/10.5281/zenodo.4734050
2https://doi.org/10.5281/zenodo.4741963
3https://www.youtube.com/watch?v=sz9z2Zul2aw
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Figure 1: The dataset construction process.

commits as is, and processed references that pointed to pull re-
quests to retrieve all relevant commits. Invalid links such as broken
ones or links that pointed to branches and not specific commits or
pull requests were filtered. Then, we identified the individual files
that were modified in each commit using the git-diff command.
Furthermore, we retrieved the file containing the security patch
and the file without the patch (related to the previous commit).
We labeled the files as secure and vulnerable respectively. Files
that contained test cases were also filtered (i.e. we dropped the
files with the word “test" in their filename). Finally, we sorted the
collected files in a specific file hierarchy based on the CWE ID and
the language.

As we discussed earlier, we have also generated a commit mes-
sage dataset. This dataset was populated during the second step of
the aforementioned process. We use the security patch commit list
to collect and label corresponding commits. An equal amount of
generic commit messages that are not related to security patches
were also collected. Such messages can be utilized as counterexam-
ples in a Natural Language Processing text classification setting.

Specifically, for each security patch, we obtain a random commit
sourced from its repository. This significantly avoids the chance of

Table 1: Descriptive statisticsmeasurements for our datasets

Measurement Value
Main dataset

GitHub projects 1675
Commits 5877
Unique CWEs 168
Unique CVEs 5131
All files 27476
Vulnerable files 13738
Non-vulnerable files 13738
Unique file extensions 48

Supporting dataset
Min Max Avg

Security-patch
commits

Word count 0 2169 53.75
Character count 2 12201 327.56

Random
Generic commits

Word count 0 6113 29.25
Character count 2 46501 179.18

Figure 2: File hierarchy system.

accidentally selecting security patch commits since they average
only the 0.8% of all commits in a repository according to our dataset.

3 DATASET DESCRIPTION
Our dataset contains: a) the directory with all source code files,
b) a JSON file containing commit and file information associated
with CVE IDs and CWE IDs, c) the commit message dataset which
consists of three separate CSV files. Figure 3 illustrates the structure
of the JSON file.

Table 1 provides descriptive statistics regarding our dataset.
Specifically, the dataset contains 1.4 GB of source code including
27476 files collected from 1675 GitHub repositories. Half of these
files contain vulnerabilities and the other half are the respective
patched versions of the vulnerable source code. As described in
the previous section, our dataset follows a specific structure: we
group all files per vulnerability and in the corresponding folder we
group them per language. In both cases grouping is easy to perform
using the defect ID and the file extension respectively. This allows
researchers to quickly retrieve files that are written in a specific lan-
guage and are related to a particular class of vulnerabilities. Overall,
the included vulnerabilities span over 168 unique CWE categories
and 5131 unique CVEs. Table 2 shows the top five vulnerabilities in
terms of appearance in the dataset.

Figure 2 illustrates the hierarchy of our dataset. Root directories
are named after the CWE ID (<CWE_ID>). Inside each directory we
include directories with files written in the same programming lan-
guage. The names of these directories come from the extensions of
the files that contain (<filename_extension>); we use “None” when
the language cannot be determined. In particular cases multiple

Table 2: Fivemost represented vulnerability types in dataset
based in terms of appearance.

CWE ID Vulnerability Description Files Commits
CWE-79 Cross-site Scripting 4094 813
CWE-20 Improper Input Validation 2028 462
CWE-125 Out-of-bounds Read 1958 398

CWE-119 Improper Restriction of
Operations within the Bounds
of a Memory Buffer

1724 468

CWE-200 Exposure of Sensitive Information
to an Unauthorized Actor

1334 332
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Figure 3: The dataset metadata JSON file structure.

folders may contain files written in the same language (e.g., .h
and .c folders). Each source code file name follows the format:
“good/bad_commitID_fileID”. We explain each part in the following:

• The literal string “bad” or “good” denotes if the source code
file is vulnerable or secure respectively.

• The commit ID is a numerical identifier for the commit entry
associated with the source code file. Each commit can be
traced through its ID in the file_info.json file. Figure 3
illustrates the structure of this file. Note that all the files that
where modified in the same commit have the same commit
ID in their filename.

• The file ID is a numerical identifier used to distinguish be-
tween different files of the same commit. Furthermore, the
vulnerable and secure versions of the same file have the same
file ID, e.g., “bad_59_3” and “good_59_3”.

Our method ensures that no filename collisions will occur when
merging different directories that contain files associated with dif-
ferent vulnerability types. This allows researchers to group many
different vulnerability categories together into fewer, more gen-
eral categories. For instance, one could group the CWE-121 and
CWE-122 categories together to make a category for both stack and
heap-based overflows. Additionally, one can quickly examine the
most popular defects in a language. Figure 4 depicts the distribution
of files across the five most frequent vulnerability types and popular
programming languages (i.e. with the most files containing code
written in the corresponding language). Observe that “Improper
Restriction of Operations within the Bounds of a Memory Buffer"
(CWE-119) is the most popular defect among C files.

Furthermore, the supporting dataset includes 11744 commit mes-
sages that correspond to 5872 commits of the main dataset plus an
equal amount of generic random commit messages sourced from the
same repositories. The supporting dataset consists of two CSV files
(in QUOTE_ALL mode). The first is related to the commit messages
coming from security patch commits and contains four columns,
namely: vulnerability type, CVE Identification, commit URL and
the commit message itself. The second file contains generic commit
messages that are not related to security patches. Table 1 shows
that the average length of the security-patch commits is larger than
the length of generic commits. This can be explained by the fact
that security patches can have more information concerning the
vulnerability and the repairing process.

Figure 5 illustrates the distribution of the ten most frequent vul-
nerabilities in the ten most vulnerable repositories (i.e., the reposi-
tories containing the most defects). The “Unknown” CWE category
includes CVEs that are not assigned in any of the existing CWE

Figure 4: Distribution of the five most frequent CWEs and
popular programming languages.

categories. Such cases can be found in the “None” folder at the CWE
level of the dataset. An interesting observation is that Linux has by
far the most commits concerning popular CWEs such as CWE-119
and CWE-200. In the majority of the remaining projects, CWE-79
holds the largest percentage. Notably, in the case of the tcpdump
project the CWE-125 (“Out-of-bounds Read") is the most popular.

4 APPLICATIONS
Our dataset can be used for a variety of tasks in ML applications.

Vulnerability detection and code repair. Recently there have
been several advances in the field of deep learning [13, 15] for
vulnerability detection. Our dataset offers a wide variety of files,
across multiple programming languages, collected from real-world
scenarios and from a wide range of repositories. Furthermore, it
contains vulnerable files paired with secure counterparts offering a
balanced dataset for training deep learning models. Such features
make it useful not only for the tasks of vulnerability detection and
classification but also for training deep learning models on the task
of automatic source code correction.

Code change embeddings. Another utilization may involve
learning vector representations of the actual code changes, in a
way that the vectors of similar vulnerability patches would be close
in the vector space [6]. These representations can then be used
for a variety of tasks such as the detection of vulnerability patch
commits or their classification to vulnerability categories.

Applications on commit messages. The commit messages
that accompany the code changes of our dataset can be utilized in
a variety of tasks. First, they can be used to fine-tune the aforemen-
tioned code change embeddings, thus adding the aspect of semantic
intent of the vulnerability patch, resulting in higher-quality repre-
sentations [6]. Furthermore, the code change representations paired
with their respective commit messages can be used to train a deep
learning model to automatically generate commit messages. Finally,
they can be used for the detection and classification of vulnerability
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commit messages and facilitate the creation of new source code
vulnerability datasets.

As an example, consider Table 3. The table, demonstrates the
performance metrics of three classification ML models against the
commit message dataset, on the task of commit message classifi-
cation to either “security-patch” or “non security-patch” commit
messages. The Naive Bayes and Random Forest models use a tf-idf
vectorizer while the Convolutional Neural Network model uses
one-hot encoding. We pre-processed the messages by stemming
words using the Lancaster Stemmer algorithm [10] and by remov-
ing stop-words for the cases of the Naive Bayes and Random Forest
models. Our initial findings indicate that Random Forest models
perform slightly better than the rest of the models in identifying
security patch commit messages.

5 LIMITATIONS
One limitation of our dataset is that it is split and labeled in files,
not functions. This reduces the number of data samples and subse-
quently the dataset’s granularity. A potential solution would be to
use a language parser for each programming language appearing
in the dataset to split the files into functions and then label them
using the git-diff of the commits.

An additional limitation involves the utilization of the commit
message dataset as training data for ML models aimed to fully
automate vulnerable source code mining. One has to ensure the
quality of the resulting dataset to manually inspect the commits
classified as security patches. The random sampling that we used
for labeling negatives do not correspond to the gold truth. However,
the 0.8% of security patches is very low, it is unlikely that we pick
false positives in sampling. Moreover, the efficacy of the model
in a mining scenario can be further improved by decreasing false
positives at the expense of more false negatives by changing the
classification decision threshold of models from the default value
of 0.5.

6 RELATEDWORK
There have been many attempts to create source code vulnerability
datasets, especially for utilization in the context of ML applications.
The main approaches of data collection in this field are:

Synthetic code creation. In this context, the vulnerability datasets
are composed of artificial code examples, generated for some spe-
cific purpose, e.g., to test security scanners [14]. Such datasets en-
sure quantity for deep learning applications [7, 9, 13]. However, on
the quality front, the ability of models to generalize over real-world
scenarios is limited by the simplicity of the generated code.

Implicitly collected vulnerabilities. In this category, vulnera-
bilities are identified using implicit methods, such as static analysis

Table 3: Commit message classification performance met-
rics for different ML models.

ML Model Accuracy F1-Score Recall Precision
CNN 83% 83% 83% 83%
Naive Bayes 82% 82% 82% 82%
Random Forest 84% 84% 84% 84%

Figure 5: Distribution of ten most frequent CWEs in the ten
most vulnerable repositories.

tools [12, 13] or by filtering commits using security-related key-
words [15, 16]. In this case, the accuracy, variety and overall quality
of the data inherit the limits of the selected methodology.

Explicitly collected vulnerabilities. Here, vulnerable source
code is collected based on publicly disclosed vulnerability incidents.
Gkortzis et al. [5] present a dataset containing the repositories of
vulnerable open-source systems along with vulnerability metadata.
However, the label granularity is on project-level (in our case is on
file-level). Jiahao et al. [4] created a collection of vulnerable C code
by crawling the CVE database and extracted vulnerability-related
code changes of methods, complemented by the respective CVE
descriptions. Ponta et al. [11] manually curated a Java vulnerability
dataset ensuring high accuracy but resulting in a comparatively
limited collection of 1282 commits mapped to 624 vulnerabilities.
However, this dataset is limited to security patch commit links and
does not contain any actual source code.

Our work falls in the latter category, ensuring high-quality data
with accurate labels and code naturalness. We collected a balanced
dataset of vulnerable source code and its patched counterparts in
file-level granularity, by crawling the NVD. We also complement
our dataset with a supporting dataset of all the commit messages
that accompany the collected file changes. Unlike existing work,
our dataset spans across multiple programming languages, from
a large collection of repositories. Vulnerable and non-vulnerable
code is paired in code changes. These features make it useful for a
wide variety of tasks in ML applications.

7 CONCLUSIONS
We have presented a dataset of vulnerable source code and its re-
spective patched/secure counterparts retrieved from open source
software repository Git commits. We have also obtained the commit
messages involved in those commits and trained models to distin-
guish vulnerability patch related commit messages. This allows
an expansible vulnerable source code dataset that can be used for
data-driven automated vulnerability detection techniques and other
research purposes.
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